万万没想到,除了香农计划,Python3.11还有这么多性能提升!
作者:Beshr Kayali
译者:豌豆花下猫@Python猫
英文:https://log.beshr.com/python-311-speedup-part-1
转载请保留作者及译者信息!
目录
- 优化了一些 printf 风格 % 的格式化代码
- 优化了 Python 大整数的除法
- 优化了数字 PyLongs 求和
- 精简列表的扩容操作,提升了 list.append 性能
- 减少了全 unicode 键的字典的内存占用
- 提升了使用asyncio.DatagramProtocol 传输大文件的速度
- 对于 math 库:优化了 comb(n, k) 与 perm(n, k=None)
- 对于 statistics 库:优化了 mean(data)、variance(data, xbar=None) 与 stdev(data, xbar=None)
- 纯 ASCII 字符串的 unicodedata.normalize(),提升到常数时间
优化了一些 printf 风格 % 的格式化代码
$ python -m pyperf timeit -s \
'k = "foo"; v = "bar"' -- '"%s = %r" % (k, v)'
.....................
Mean +- std dev: 187 ns +- 8 ns
$ python -m pyperf timeit -s \
'k = "foo"; v = "bar"' -- 'f"{k!s} = {v!r}"'
.....................
Mean +- std dev: 131 ns +- 9 ns
$ python -m pyperf timeit -s \
'k = "foo"; v = "bar"' -- '"%s = %r" % (k, v)'
.....................
Mean +- std dev: 100 ns +- 5 ns
优化了 Python 大整数的除法
python -m pyperf timeit -s 'x=10**1000' -- 'x//10'
.....................
Mean +- std dev: 1.18 us +- 0.02 us
python -m pyperf timeit -s 'x=10**1000' -- 'x//10'
.....................
Mean +- std dev: 995 ns +- 15 ns
即使在 x64 上,Python 的除法也有些残缺。假设是 30 位数字,则多精度除法所需的基本结构是 64 位除以 32 位的无符号整数除法,产生一个 32 位的商(理想情况下还会产生一个 32 位余数)。有一个 x86/x64 指令可以做到这一点,也就是 DIVL。但是如果不使用内联汇编,当前版本的 GCC 和 Clang 显然做不到从 longobject.c 中发出该指令——它们只会在 x64 上使用 DIVQ(128 位除以 64 位的除法,尽管被除数的前 64 位被设为零),而在 x86 上则使用固有的 __udivti3 或 __udivti4。
——Mark Dickinson(全文)
优化了数字 PyLongs 求和
$ python -m pyperf timeit -s 'd = [0] * 10000' -- 'sum(d)'
.....................
Mean +- std dev: 37.4 us +- 1.1 us
$ python -m pyperf timeit -s 'd = [0] * 10000' -- 'sum(d)'
.....................
Mean +- std dev: 52.7 us +- 1.3 us
$ python -m pyperf timeit -s 'd = [0] * 10000' -- 'sum(d)'
.....................
Mean +- std dev: 39.0 us +- 1.0 us
精简列表的扩容操作,提升了 list.append 性能
$ python -m pyperf timeit -s \
'x = list(map(float, range(10_000)))' -- '[x.append(i) for i in range(10_000)]'
.....................
Mean +- std dev: 605 us +- 20 us
$ python -m pyperf timeit -s \
'x = list(map(float, range(10_000)))' -- '[x.append(i) for i in range(10_000)]'
.....................
Mean +- std dev: 392 us +- 14 us
$ python -m pyperf timeit -s \
'' -- '[x for x in list(map(float, range(10_000)))]'
.....................
Mean +- std dev: 553 us +- 19 us
$ python -m pyperf timeit -s \
'' -- '[x for x in list(map(float, range(10_000)))]'
.....................
Mean +- std dev: 516 us +- 16 us
减少了全 unicode 键的字典的内存占用
>>> sys.getsizeof(dict(foo="bar", bar="foo"))
232
>>> sys.getsizeof(dict(foo="bar", bar="foo"))
184
提升了使用asyncio.DatagramProtocol 传输大文件的速度
asyncio.DatagramProtocol
提供了一个用于实现数据报(UDP)协议的基类。有了这个优化,使用asyncio UDP 传输大文件(比如 60 MiB)将比 Python 3.10 快 100 多倍。asyncio.DatagramProtocol
有着数量级的提速。对于 math 库:优化了 comb(n, k) 与 perm(n, k=None)
math
标准库中增加了 comb(n, k) 和 perm(n, k=None) 函数。两者都用于计算从 n 个无重复的元素中选择 k 个元素的方法数,comb
返回无序计算的结果,而perm
返回有序计算的结果。(译注:即一个求组合数,一个求排列数)unsigned long long
类型而不是 Python 整数进行comb
计算(*)。对于
0 <= k <= n <= 67
,comb(n, k)
always fits into auint64_t
. We compute it ascomb_odd_part << shift
where2 ** shift
is the largest power of two dividingcomb(n, k)
andcomb_odd_part
iscomb(n, k) >> shift
.comb_odd_part
can be calculated efficiently via arithmetic modulo2 ** 64
, using three lookups and twouint64_t
multiplications, while the necessary shift can be computed via Kummer’s theorem: it’s the number of carries when addingk
ton - k
in binary, which in turn is the number of set bits ofn ^ k ^ (n - k)
. *
math.comb(n, k)
(for small n) got replaced with a more direct method based on counting trailing zeros of the factorials involved. (*).$ python -m pyperf timeit -s \
'import math' -- 'math.comb(100, 55)'
.....................
Mean +- std dev: 3.72 us +- 0.07 us
# ---
$ python -m pyperf timeit -s \
'import math' -- 'math.comb(10000, 5500)'
.....................
Mean +- std dev: 11.9 ms +- 0.1 ms
$ python -m pyperf timeit -s \
'import math' -- 'math.comb(100, 55)'
.....................
Mean +- std dev: 476 ns +- 20 ns
# ---
$ python -m pyperf timeit -s \
'import math' -- 'math.comb(10000, 5500)'
.....................
Mean +- std dev: 2.28 ms +- 0.10 ms
# Mean
$ python -m pyperf timeit -s \
'import statistics' -- 'statistics.mean(range(1_000))'
.....................
Mean +- std dev: 255 us +- 11 us
# Variance
$ python -m pyperf timeit -s \
'import statistics' -- 'statistics.variance((x * 0.1 for x in range(0, 10)))'
.....................
Mean +- std dev: 77.0 us +- 2.9 us
# Sample standard deviation (stdev)
$ python -m pyperf timeit -s \
'import statistics' -- 'statistics.stdev((x * 0.1 for x in range(0, 10)))'
.....................
Mean +- std dev: 78.0 us +- 2.2 us
# Mean
$ python -m pyperf timeit -s \
'import statistics' -- 'statistics.mean(range(1_000))'
.....................
Mean +- std dev: 193 us +- 7 us
# Variance
$ python -m pyperf timeit -s \
'import statistics' -- 'statistics.variance((x * 0.1 for x in range(0, 10)))'
.....................
Mean +- std dev: 56.1 us +- 2.3 us
# Sample standard deviation (stdev)
$ python -m pyperf timeit -s \
'import statistics' -- 'statistics.stdev((x * 0.1 for x in range(0, 10)))'
.....................
Mean +- std dev: 59.4 us +- 2.6 us
纯 ASCII 字符串的 unicodedata.normalize(),提升到常数时间
PyUnicode_IS_ASCII
实现。$ python -m pyperf timeit -s \
'import unicodedata' -- 'unicodedata.normalize("NFC", "python")'
.....................
Mean +- std dev: 83.3 ns +- 4.3 ns
$ python -m pyperf timeit -s \
'import unicodedata' -- 'unicodedata.normalize("NFC", "python")'
.....................
Mean +- std dev: 34.2 ns +- 1.2 ns